Search results

Search for "contact resonance atomic force microscopy (CR-AFM)" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • connect the qualitative and quantitative behavior to experimental features. Keywords: atomic force microscopy (AFM); contact resonance; nonlinear normal mode (NNM); tip–sample detachment; photothermal excitation; Introduction Contact resonance atomic force microscopy (CR-AFM) [1][2], piezoresponse force
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • obtained sample thickness could be varied. Films with a thickness larger than 400 nm are considered as bulk, since the substrate does not influence the mechanical properties of the sample [31]. Contact-resonance mode AFM Contact-resonance atomic force microscopy (CR-AFM) measurements have been performed
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • , Anhui, China 10.3762/bjnano.10.159 Abstract Subsurface imaging of Au circuit structures embedded in poly(methyl methacrylate) (PMMA) thin films with a cover thickness ranging from 52 to 653 nm was carried out by using contact resonance atomic force microscopy (CR-AFM). The mechanical difference of the
  • force microscopy (AFM); contact resonance atomic force microscopy (CR-AFM); contact stiffness; defect detection; flexible circuits; subsurface imaging; Introduction With the rapid shrinkage of microelectronic devices, flexible circuits are intensively used while being functionalized as supercapacitors
  • ) has emerged as a promising way. Various SPM-based nanoscale subsurface imaging methods have been proposed that rely on different detection mechanisms including thermal, magnetic, electric, and mechanical sensing. Among them, contact resonance atomic force microscopy (CR-AFM) demonstrates the unique
PDF
Album
Full Research Paper
Published 07 Aug 2019

Nanometer-resolved mechanical properties around GaN crystal surface steps

  • Jörg Buchwald,
  • Marina Sarmanova,
  • Bernd Rauschenbach and
  • Stefan G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 2164–2170, doi:10.3762/bjnano.5.225

Graphical Abstract
  • element approach (FEM). We show that the breakdown of half-space symmetry leads to an “artificial” reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results
  • with experiments. Keywords: finite elements; gallium nitride; indentation; mechanical properties; molecular dynamics; nanostructures; Introduction Recently developed scanning probe-based techniques, such as contact resonance atomic force microscopy (CR-AFM) [1][2], allow for the assessment of
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2014

Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

  • Gheorghe Stan and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 278–288, doi:10.3762/bjnano.5.30

Graphical Abstract
  • , and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM) configurations, which differ in the method used to excite the system (cantilever base vs sample excitation), are analyzed in this work. Similarities and differences in the observables of the
PDF
Album
Full Research Paper
Published 12 Mar 2014
Other Beilstein-Institut Open Science Activities